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Summary 
The goal of this paper is to restore a design experience, concerning the main aeroelastic problems of cable stayed 
bridges, as carried out for the new bridge across the Adige river. The first task concerns the aeroelastic excitation of the 
bridge deck, that is the flutter instability and the vortex shedding excitation. The second one considers the suppression 
or, at least, the mitigation of the stays vibration mainly due to wind and rain-wind excitation. 
The deck aeroelastic stability is evaluated, based on aeroelastic tests carried out at the Politecnico of Milano wind 
tunnel. The tests, on a 1:30 scaled deck model, consisted in measuring the aeroelastic derivatives in both free and 
forced motion. The flutter critical conditions (velocity and frequency) are calculated by mean of the Scanlan-Tomko 
procedure and compared with the simplified Theodorsen theory. The influence of the angle of attack and of the inherent 
structural damping on the critical parameters has been outlined. Results substantially show that the bridge deck does not 
suffer flutter instability. 
The cable vibration mitigation has been faced by mean of classical viscous dampers. Despite the simplicity of the 
technical solution, different practical design problems arise. In the paper, a particular attention is reserved to the 
optimization criteria for the evaluation of the damping coefficients and to the determination of the energy, which has to be 
dissipated by the dampers. 
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1. Introduction 
The present paper reports two basic experiences related to the design of a cable stayed bridge (across the Adige River): 
the aeroelastic excitation of the bridge deck and the cable vibration mitigation. 
Regarding the first task, the attention has been focused on the flutter instability and on the vortex shedding excitation; 
the problem has been experimentally faced, by determining the aeroelastic parameters in wind tunnel tests carried out at 
the Politecnico of Milano boundary layer wind tunnel. The flutter critical conditions are determined in terms of critical 
velocity and frequency; the bridge dynamic behaviour is approximated by a 2 DOFs sectional model of the deck; 
aerodynamic properties of the deck are resumed by the experimentally determined aerodynamic force coefficients and 
the aeroelastic derivatives. The knowledge of the aeroelastic derivatives and, in particular, their values at very low 
reduced velocity, allow to evaluate (at least as order of magnitude) the sensibility of the bridge deck to be excited by the 
vortex shedding phenomenon. As a matter of fact, the wind tunnel investigation has considered the tower aerodynamic 
and aeroelastic behaviour, too. Nevertheless, due to space limitations, this aspect is not treated in the present paper. 
The second aspect which is treated in the paper concerns the damping of cable against dynamic excitations. It is well 
known that one of the main stay problems is the susceptibility to be dynamically excited. This is due to both the wide 
range of external load frequencies (wind action, pedestrian and vehicular dynamic loads, decks or towers movement, 
etc.) and to the very small inherent damping in highly tensioned cables (usually lower than 1‰). In addition, in the 
present case study, the stay dimensions (length and diameter) are among the most sensitive to rain-wind induced 
vibrations. The induced vibrations, if they are not suppressed or strongly mitigated, can give rise to fatigue problems and 
damages in cables and/or anchorage systems. In this paper, the typical design problems in determining the damper 
characteristics are discussed with reference to the Adige bridge case. 



2. Bridge deck aeroelastic behaviour 
The bridge deck section (Figure 1) is studied as a rigid mechanical system, characterised by a deck width B, a deck 
thickness D and a bridge main span length L. The equations of motion, which describe the dynamic system unit length, 
can be written as: 
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where m is mass and I is the mass momentum of inertia. 
Resulting wind forces, acting on the section, can be decomposed into a lift force FL, a drag force FD and an aerodynamic 
moment Ma, applied on the center of mass G. Vertical force FY is obtained combining lift and drag forces; with reference 
to the global coordinate system: 

 αα senFFF DLY +−= cos  (2) 

Linearized theory is adopted, that is the angle of attack, that is the angle between the section chord and the main flow 
direction, is supposed to be sufficiently small. This allows one to assume that |FY| = |FL|. 
Referring to Figure 2, the bridge stiffness properties are resumed by vertical and torsional springs, kY and kα, while the 
damping properties are considered by mean of the damping coefficients cY and cα. The elastic center E corresponds to 
the application point of dampers and springs and, in force of the assumed symmetry of the section, it coincides with the 
center of mass G. They are both located at the midspan of the section. 
The section has 2 DOFs, vertical and torsional, around the elastic center. Two reference systems are defined: a 
cartesian inertial reference frame OXYZ and a joint to the vibrating structure coordinate system Gx’y’z’, with the origin 
coincident with centre of mass G and x’ and y’ axes oriented, respectively, along the sectional middle line chord and the 
orthogonal direction. 
The angle between the two systems coincides with the angle of attack, which defines the position of the section with 
respect to the mean wind direction, assumed to be coincident with the X direction. 
 
2.1 The bridge deck section loading model 
If the superposition principle is assumed to be applicable, the sectional time-varying wind load can be expressed as the 
sum of a quasi-steady component, a buffeting fraction, a vortex-shedding induced one and a self-excited one, directed 
along the global reference axes. In studying the aeroelastic behavior of the bridge deck section, the main attention is 
focused on the aeroelastic instability due to flutter; hence, the self-excited forces have to be defined. 
The most common expression for sectional self-excited forces is in the mixed time-frequency domain; the self-excited 
forces are modeled by means of parameters (aeroelastic derivatives) which are functions of the frequency response. 

 

 
Figure 1. Adige bridge deck section. 
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Figure 2. Numerical model of the bridge deck section. 

 
This formulation is due to Scanlan and Tomko [1] and is based on a sinusoidal coupled motion of a 2 DOFs sectional 
model, with a reduced frequency K = ωB/U: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
⎥⎦
⎤

⎢⎣
⎡ +++=

⎥⎦
⎤

⎢⎣
⎡ +++=

U
tyKAKtKAK

U
tBKKA

U
tyKKAqBtM

U
tyKHKtKHK

U
tBKKH

U
tyKKHqBtF

a

L

*
4

2*
3

2*
2

*
1

2

*
4

2*
3

2*
2

*
1

αα

αα

&&

&&

 (3) 

where ρ is the air density, q=1/2 ρU² is the kinetic pressure, Hi* and Ai* (i =1,…,4) are the aeroelastic derivatives, 
commonly identified in wind tunnel tests as function of the reduced frequency K or the reduced velocity Ured = 2π / K = 
2πU / ωB.  
In the present case, the aeroelastic derivatives have been determined at the Politecnico di Milano wind tunnel [2]. The 
measured values of the most significant flutter derivatives, H1* and A2*, are plotted in Figure 3. 
In order to keep the aeroelastic behaviour at very low wind speeds, an alternative approach to the flutter problem has 
been adopted [3]. By this approach, the Equations (3) become: 
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Figure 3. Flutter derivatives H1* and A2*, measured at the Politecnico di Milano wind tunnel for the attack angles 0°, 3°, -3°. 



where the relationships among aeroelastic parameters are: 
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2.2 Flutter equation solution 
The self-excited forces depend on the motion of the system: the study of the aeroelastic two-dimensional system is more 
complex with respect to the quasi-steady regime, because of the dependency on the reduced frequency K. 
Nevertheless, it is possible to identify critical flutter condition, if flutter derivatives are known, by mean of the following 
procedure which involves the solution of an eigenvalue problem. 
In fact, if the motion of the system is harmonic with circular frequency ω, non-trivial solution of the eigenvalue problem 
can be searched by setting to zero the matrix coefficients determinant. A fourth-degrees complex equation is obtained. If 
real and imaginary parts are splitted, two real equations are obtained. Solutions for the two real equations are searched, 
by varying the reduced frequency K: the point (Kc, Xc), which represents the common solution of the two equations, 
identifies flutter condition. Finally, incoming wind speed Ucrit, corresponding to the unstable system, can be obtained. 
Typical diagrams to obtain critical conditions are shown in Figure 4, where the solution of the flutter equations are 
referred to the coupling of the first and the third vibration modes and to an angle of attack of 0°. 
The two plots of Figure 4 are referred to different interpolation methods for the experimental coefficients: with a linear 
function in the first case (on the left); with a third degree polynomial function in the second case (on the right). It is 
interesting to observe that the two different solutions are approximately coincident, if experimental approximation in 
determining flutter coefficients is taken into account. 
In order to calculate flutter velocity, all the flutter coefficients have to be known at the different reduced frequencies; the 
ratio between the vertical and the torsional frequency of the bridge deck has to be known also. For this reason, it is 
common to extract flutter derivatives for bridge decks in wind tunnel, being not available analytical expression valid for 
different geometries. Theoretical expressions are only available for flat plate; they where determined by Theodorsen 
(1935) for a thin airfoil, with the use of a special function called the circulation function. As a matter of fact, a hybrid 
method can be used as useful reference tool, by assuming that the bridge deck section is sufficiently streamlined, 
applying elastic and inertial parameters of the real deck and flutter derivative corresponding to flat plate. 
Main results of the described procedures, applied to the Adige Bridge, are reported in the following; the effect of the 
angle of attack on the flutter wind speed is also outlined. Since the above cited tool is valid for a two-dimensional 
scheme, the modal analysis of the entire bridge is necessary to identify the natural frequencies and the modal shapes 
which are susceptible to coupling phenomena and subsequent flutter excitation; main results are synthesized in Table 2, 
while Table 1 resumes the geometrical and the inertial parameters. 

     
Figure 4. Real and imaginary parts of the flutter equation solution. Coupling of modes 1 and 3 – angle of attack 0° - linear 
interpolation vs polynomial fitting of experimental coefficients. 

 



Table 1. Geometrical and inertial parameters of the Adige bridge deck section. 

L[m] b [m] D [m] B [m] m [kgm-1] I [kgm] 
1.0 15.0 3.9 30.0 46500 3400000 

 
Table 2. Modal analysis results (V=vertical; T=torsional; S=symmetric; A=non-symmetric). 

Mode # ω2 [rad/sec]2 ω [rad/sec] f [Hz] Modal mass Shape type 
1 6.9255 2.632 0.42 8484.1 VS 
2 14.3219 3.784 0.60 8364.3 VA 
3 20.4147 4.518 0.72 7114.4 TS 

11 81.2181 9.012 1.43 6998.9 TA 
 
Table 3. Critical flutter wind speed and frequencies for different angles of attack and damping values. 

  Flat plate α = -3° α = 0° α = 3° 
Modes ξ Ucrit fcrit Ucrit fcrit Ucrit fcrit Ucrit fcrit 

 [%] [m/s] [Hz] [m/s] [Hz] [m/s] [Hz] [m/s] [Hz] 
1+3 0 220 0.54 218 0.56 166 0.64 70 0.70 
1+3 0.5 223 0.53 223 0.55 185 0.62 86 0.69 

2+11 0 486 0.93 484 1.02 366 1.23 140 1.40 
2+11 0.5 490 0.92 494 1.00 406 1.19 174 1.38 

 
For the present case study, three sets of flutter coefficients are experimentally available and are here considered, 
respectively for the angles of attack 0°, -3° and 3°. Different modes coupling have been evaluated; the most prone to 
flutter excitation are the mode couples 1-3 and 2-11. Two different structural damping ratio have been hypothesized, that 
is ξi = 0% and ξi = 0.5% for all the considered modes. Table 3 resumes the main result of the study. 
The critical flutter speed is equal to 70 m/s in the worst case of coupling between first and third modes, under the angle 
of attack +3° and zero structural damping; such a critical value increases up to 86 m/s if an even very small structural 
damping is considered. It is interesting to observe the similitude of the theoretical flat plate model and the experimental 
model at α = -3°. 
It seems important to observe that accounting for large angle of attack (± 3°, in this case) is particularly safety. 
Therefore, flutter does not seem to be a relevant problem for the studied structure. Nevertheless, it is interesting to 
evidence the sensitivity of this structure to the angle of attack: critical flutter frequency and critical wind velocity evidence 
a very strong variation, with the increase of the angle of attack. The type of instability changes also, because it varies 
from a coupled flutter to a purely torsional flutter instability (very dangerous for the structure). Therefore, in order to cover 
the different working conditions for the structure, wind tunnel tests have to be carried out for different angles of attack. 
 
3. Bridge deck vortex shedding 
Wind tunnel tests performed at low wind speeds have evidenced negative values of h1* and a2* (Figure 5), that is index 
of a possible interaction between vortex-shedding and structural motion (lock-in). 
The main parameter to define the sensitivity of the structure to the vortex shedding is the Scruton number defined as 

 2D
mScr ρ

ξ
=  (6) 

In the case of the Adige Bridge, even if a small value is hypothesized for the damping ratios ξi = 0.5%, the Scruton 
number assumes values which are higher than 10 (~14), that is vortex shedding phenomenon should not be afraid. 
On the other hand, if the aeroelastic problem is accounted for, it is possible to calculate the minimum damping necessary 
to avoid the excitation due to vortex shedding. By considering the only equation of motion for the vertical displacement,  



       
Figure 5. Flutter derivatives h1* and a2*, at low reduced velocity, expressed in the alternative approach. 

 
which is here related to the first vibration mode, the total damping is obtained by the superposition of aeroelastic and 
structural damping components. In order to obtain stability against vortex-shedding, the total damping must be positive: 
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In the present case, it states ξ ≥ 0.47 ‰ (with geometrical data of Table 1, V* = 0.5 and h1* ≈ -1.1 (Figure 5). Of course, 
this is an approximate procedure, because vortex shedding is a strongly non-linear phenomenon; it is here treated by a 
linear approach, but this allows to estimate the order of magnitude for the minimum structural damping which is 
necessary to protect the structure from vortex-shedding. 
 
4. Cable vibration damping 
Commonly, in order to mitigate the stay cable vibrations, stiffening systems (such as secondary cables) or damping 
devices (as, for instance, TMD and visco-elastic dampers) are placed on the cables themselves, normally close to the 
cable end. When visco-elastic dampers are used, as it usually occurs in the case of large dimension stays, one of the 
design problem is to determine the optimal value for the damping coefficient. The damping parameter optimization is 
made by taking into account: (a) the reference mode number; (b) the damper location; (c) the Scruton number. Usually, 
in-plane dampers are sufficient to solve vibration problems. Nevertheless, due to the high tension level, out of plane 
cable and damper features can be assumed to be the same as the in-plane ones. 
 
4.1 Cable properties 
Stay cables are arranged in groups; each group is composed of four cables (Figure 6a). Table 4 resumes the 
geometrical and mechanical properties of cables, the cable tension due to permanent loads, the dynamic parameters 
and the minimum value of damping ratios which is necessary to avoid aeroelastic phenomena. Cable frequencies 
correspond to straight cables first mode; ξSc=10 and ξgall are the minimum damping ratios based, respectively, on the 
Scruton number and the galloping criteria, as described in the next paragraph. 
 
Table 4. Geometric, dynamic and mechanical properties, forces and minimum damping ratios of single cables. 

Cable 
group 

L 
[m] 

α 
[deg] 

φ 
[mm] 

Anom 
[cm2] 

E 
[MPa] 

w 
[kg/m] 

Nperm 
[kN] 

f1 
[Hz] 

ξSc=10 
[%] 

ξgall 
[%] 

1 162 29.6 142 138 1.63e+05 108.3 7847 0.83 0.23 0.39 
2 137 34.3 128 112 1.63e+05 87.9 6017 0.96 0.23 0.38 
3 113 41.1 118 95.5 1.63e+05 75.0 5173 1.17 0.23 0.34 
4 90 51.3 111 83.2 1.63e+05 65.3 4890 1.52 0.24 0.28 
5 73 67.3 92 57.1 1.63e+05 44.8 3743 1.99 0.24 0.26 



 
Figure 6. (a) Cable groups arrangements; (b) Pacheco’s universal dimensionless damping curve. 

 
4.2 Design criteria 
The existence of an optimal value for the damping coefficient was demonstrated by Kovacs (1982). In fact, increasing 
damping over a certain threshold can induce a fictitious stiffness in the cable which vanishes the energy dissipation role 
of the damper. The concept can be clearly understood by considering the limit conditions c=0 e c=∞. Of course, if c→0, 
the damping capacity tends to be null; on the other hand, if c→∞, the damper behaves as a rigid restraint at the location 
point and the cable simply changes its modal frequencies and shapes, without any energy dissipation. 
Pacheco et al. [4] demonstrated the existence of a universal damping curve (Figure 6b) which relates the cable/damper 
parameters to the effective damping ratio added by the damping system. Following the Pacheco’s formulation, the 
damping coefficient to optimize the damping ratio for a given cable vibration mode is: 
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where copt,i is the required optimal damping coefficient, m is the cable mass per unit length, L is the cable length, ω01 is 
the circular frequency of the first vibration mode of the undamped cable, xc is the damper location distance from the 
cable end anchorage, i is the reference mode number for the optimization. 
Figure 6b shows that, for a given damper and cable, the damping ratio depends on the mode number (i) and on the 
damped location (xc / L). In the present case, xc / L is determined by the architectural design condition hc = 1.5 m (hc 
being the - constant - level of the damper-cable connection with respect to the cable lower anchorage) and the 
optimization has been calibrated on the 2nd mode (i = 2), so that an adequate damping level is guaranteed for, at least, 
the first 6÷8 modes. 
In order to evaluate the minimum required damping ratio, two basic criteria have been considered. Firstly, the cable 
galloping (due to the possible presence of ice) has to be avoided. Based on the Eurocode 1 (EN 1991-1-4:2005), 
paragraph E.2.2 suggested criteria, the minimum damping ratio (ξgall in Table 4) is determined by imposing that the 
galloping onset wind velocity (vCG) satisfies the condition: vCG > 1.25 vm, where vm = 40 m/s is the design mean wind 
velocity at the cable midspan. 
In addition, other aeroelastic phenomena (such as the rain wind induced vibration, the 3D vortex shedding, etc.) have to 
be avoided and frequent vibrations (due, for instance, to the vortex shedding and to the parametric excitation induced by 
the supports - deck and towers - movement) have to be mitigated, to reduce the probability of fatigue failure in the 
cables. Despite no consolidated criteria are available at these purposes, Irvin (1997) observed that whenever the 
Scruton number 

 2φρ
ξmSc =  (9) 

is higher than 10, as order of magnitude, the cited requirements are practically satisfied. In Eq. (9), m is the cable mass 



per unit length, ρ is the air density, φ is the cable diameter and ξ is the damping ratio. Different international standard 
codes have adopted this empirical criterion; subsequently, the reference damping ratio ξSc=10 in Table 4 is evaluated by 
placing Sc ≥ 10 in Eq. (9). 
 
4.3 Dampers requirement and performance 
The damping design properties have been determined by following the Pacheco’s optimization criterion and by imposing 
that the minimum damping ratios, as outlined in the Table 4, will be largely satisfied for the first 8 modes. In Table 5, the 
damping coefficients and the subsequent dampers performance are resumed. The dampers requirement are also 
reported, in terms of maximum displacement, velocity, force and dissipating power. They have been evaluated under the 
hypothesis that the first mode is dominant and the maximum oscillation amplitude at the cable midspan, is the same 
order of magnitude as the cable diameter. This hypothesis is described by the literature to be safety side, based on 
numerous field observations. Quantities reported in Table 5 represent, respectively: xc / L, the distance of the damper-
cable connection from the lower cable anchorage, with respect to the cable length (based on hc = 1.5 m); c, the damper 
coefficient, determined as the (Pacheco’s) optimal value for the 2nd mode; ξ2, ξ1, ξ8, the damping ratios relative to the 
modes 2 (optimal) 1 and 8 (limits of the monitored modes); Sc1, the Scruton number relative to the 1st mode; Dmax,Xc, 
Vmax,Xc, Fmax,Xc, the maximum amplitude of the expected damper displacement, velocity and force (based on the above 
cited hypothesis); Pmax, the subsequent maximum power which the dampers have to dissipate. 
 
Table 5.  Dampers requirement and performance. 

Cable 
group 

xc / L c 
[kNs/m] 

ξ1 
[%] 

ξ2 
[%] 

ξ8 
[%] 

Sc1 Dmax,Xc 
[mm] 

Vmax,Xc 
[mm / s] 

Fmax,Xc 
[kN] 

Pmax 
[W] 

1 0.0187 244 0.75 0.97 0.47 32.2 8.4 44 10.7 232 
2 0.0195 185 0.78 1.01 0.49 33.5 7.8 47 8.7 206 
3 0.0203 153 0.81 1.05 0.51 34.9 7.5 55 8.4 231 
4 0.0214 131 0.86 1.11 0.54 36.3 7.5 71 9.4 335 
5 0.0224 91 0.89 1.16 0.56 37.9 6.5 81 7.3 296 

 
5. Conclusions 
In the present paper, two of the main experiences related to the design of a cable stayed bridge (across the Adige River) 
have been reported: the aeroelastic excitation of the bridge deck and the cable vibration mitigation. 
The first one is essentially based on aeroelastic tests carried out at the Politecnico of Milano wind tunnel on a 1:30 
scaled deck model, in which the aeroelastic derivatives have been determined. The flutter critical conditions (velocity and 
frequency) have been determined by mean of the Scanlan-Tomko procedure and compared with the simplified 
Theodorsen theory. The influence of the angle of attack and of the inherent structural damping on the critical parameters 
has been outlined. 
The second one concerns the design of dampers to mitigate the cable vibration. Particular attention has been focused 
on the criteria adopted to determine an optimal damping coefficient and the dissipation power for the dampers. 
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