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Abstract

In the current practice of planning
of 1light spacial membranes (the weight
of which is of about 1-3 kilos per sq.
mt), several problems appear, which make
this type of planning become very toil-
some and expensive,

The first problem is represented by
the research of the geometric shape that
has to be given to the structural sur—
face because the material which forms
it, resisting only to traction stresses,
can guarantee the stability and the re-
sistance, further bearing in mind the
fact that the geometry of the structural
surface must also satisfy definite ar—
chitectural requisites that have been
previously fixed,

A preliminary process to fix the geo-
metry of the structure is the one of the
manufacture of models. But it is obvio-
us that, as the attempts of project must
be numerous, the manufacture of models
would bring with itself remarkable and
sometimes not acceptable times and costs,
Further, this type of models (figure 1)
can give a visual indication without giv-
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ing any comfort for what refers to the
tests of geometric idoneity, suitable

to assure its static operation both in
the condition of pre-stress and in the
various steps of load,

The only convenient and quick method
for the planning, both architectonic
and structural of this type of realiza-
tions is offered by electronic program—
mes inter—actively structured, These -
Programmes permit, by means of the use
of a calculator, supplied with a dis-
Play graphics system, a quick, wvisual
and amusing design, '

When the inter-active design has
been finished, it is possible to obtain,
by means of plottering, the visual geo—
metric results on the screen: prospecti-
ves, prospects, as well as the necessary
verifications,

In the first part of this work are
reported the theoretic schematizations
and the connections which rule the ope—
ration of the structure, In the second
part, the automatic determination will
be illustrated with numerous visualiza—
tions by means of the use of a "computer
graphics display systemn,

IASS World Congress on Space Enclosures. Building Research Centre. Concordia Universily Mantreal. July ‘76 ' 4
Congres mondial de {'JASS sur les encentes spatiales. Centre de recherches sur le bitiment. Universite Concordia. Montréal, juillet ‘76



1. GEOMETRY AS CONSEQUENCE OF THE STATE OF
STRESS

1.1. Membranes with stiff contour: Conmections
between state of stress and geometry of
membranes

As it is known, the indefinite equations
expressing the conditions of balance to the
translation of an infinitesimal element of mem-
brane, according to the three directions XY
2z forming a gemerical Cartesian reference, can
be written in the following vay:
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in vhich, wvith the usual meaning of symbols:

n. = projection on the plane Z=0 of the
x
normal stress according to x ,

;‘y = -projection on the plane Z=0 of the
normal stress according to y ,

Exy =t _ = T = projection of the shearing
sgess on the plane Z=0 ,

Py Py ;z = components of p Ffor unit of sur—
Face projected on the planes Yz, Xz, XY.

The connections among the projectes stress—

es and the membrane stresses are:
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Considering the expressions (1), (2) and
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(3) it is possible to observe that, in substan-
ce, there are two ways suitable to solve the
problem of project,

a) The surface 2 = £(xy) 1is known, and it de-
sired to obtain the state of stress, )
This type of process requires that the geo—
metry of the structure can be considered as
unchangeable,
without making considerations on.the stabil-
ity of the balance, in this caﬁe the problea
is centered in the verification of the state
of stress of the membrane, considering that
the shape of the structure and the conditions
of load authorize to neglect the flexional
actions, ‘
when the structure taken in examination is
composed by material resisting only to trac-
tion (tensostructures, pneumatic structures,
etc.), the given surface should also allov
to verify the condition

(7} Wy - -15 (nx"'nyil(“x' ny)2+ 4t2) > 0
It is obvious that only in very simple cases
it is possible to find surfaces that can
easily be analitically ‘expressed vhich sa-
tisfy the (7) (For example, the sphere is a
perfect pneumatic surface). In the case of
arbitrary boundary conditions, and lacking
of radial symmetry,' it is almost impossible
‘to define a surface compatible with the (7).
In the figure 2 is illustrated an interacti-
ve sequence of a function 1z = f(xy) with
double opposite curvature, suitable to sa-
tisfy the (7). 1In the figure 3 has been vi-
sualized an attempt for the research of a
surface suital:;le to satisfy the (7) in the

presence of internal pressure.

.- b) The regimen of stresses is known, and the

balance equations are requested to supply
us with the geometry of the balanced surfa-
ce,

In the cases that frequently recur in the
practice of the designer, the equation (3) ob-
viously bound to the (1), (2), appears, consi=-
dering as unkmown function the z = £(x,y) , as



an almost linear differential equation to the
derivatives of the second order having variable

coefficients,

perbolic surface (nxny < 0) we shall have
that the stresses will be of opposite sign; for

the parabolic surfaces in one of the main direc

The equation (3) to the partial derivatives
can therefore be classified as hyperbolic, pa-
rabolic or elliptical, according to the fact
that its discriminant (t2 - Exﬁy) is greater,
equal, or smaller than zero.

Noting instead that the sign of the discri-
minant (t% - ﬁxﬁy) is invariable with referen
ce to whatever transformation of actual conti-
nuous co-ordinates and differentiable with jaco
bian # 0, we can pass to a system of curvilinear
co-ordinates coinciding with the main directions
of the stresses (t = 0).

In this reference we therefore have that
the differential equation to the partial deri-

vatives is

hyperbolic if nn < (o]

y
parabolic if nxny =0
elliptic if ~ nxny >0

From the previous classification it si pos-—

sible to draw that for the structures with hy-

Fig. 2

tions we shall have e nil stress (cones and cy-
linders), and that for the elliptic surface the
stresses are of the same sign. These conditions
on the coefficients of the differential equation
define a well determined regimen of internal

stresses for the generical unknown function

z = £(x,y) . In our case, having fixed before-
hand the value and the sign of the coefficients
x* Dy (which define the state of internal
stress of the membrane) we can foresee the type

t, n

of unknown surface which can be classified as

hyperbolic, parabolic or elliptic by the varia-

ble coefficients t, n, and ny .

Operating on these coefficients, we can de-
fine the most convenient structural surface for
the constructive reality for which it is fore-
seen,

From the geometric point of view, it is im-
portant to notice that, considering X = k1k2.
the Gaussian curvature, the structural surface
is:

hyperbolic if k1k2 <0

parabolic if k1k2 =0

elliptic if k1k2 > 0

1.2, Different forms taken by the equation (3)
in special conditions of load and of re—

gimen of stress

a) Pre-stressed membrane with nil external
loads

In this case the equation (3) takes. the
form:
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ahd in the hypothesis of considering 'ﬁx = Ey
and t =0 it is obtained: :
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an equation which show the hyperbolic specific-
ation (k1k2 < 0) of the geometric surface so-
lution of the (9), caused by the forced ellip-
tic regimen of the stresses (;x ;y > 0).

The introduction of a state of intermal co-
action, For example of pre-stressing, can chan-
ge the regimen of stresses from elliptic to hy-
perbolic (ﬁx ny< 0) in a still geometrically
hyperbolic structure (K < 0),. This is the ty-
pical case of the tensostructures in which a
pre-stress of traction is introduced assuring
the stability of the structure itself,

b) Membrane undergoing the action of its own
weight and of vertical incidental pressures

The equation (3) becomes, considering the
direction 2z as vertical,

in which: PP = own weight of the membrane,

P_ = incidental loads with direc-
tion z . ’

¢) Minimum surfaces

A surface with minimum area is a surface
for which the main curvature (H) is nil in
all its points,

Remembering that in a Cartesian reference
(x,y,2z) the expression of the main curvature

is:

128

(11) H-

. 2

922 9n.2 3
2 1+(dx) +(g—-y)A

-2

and that the equation of membrane for uniform
state of stress (n,) undergoing to the actiom
of its own weight, external action shared and
vith internal pressure (pneumatic structures)
is given by the:

(12) 2(n°+ppz)ﬁ =+ [P+ T(zo.-z)] +

1

2 2
,11 + (&

y = specific weight of the liquid

we obtain that for pp =y = 0 , the curvature
acquires the constant value of H = + p/(2n,)
and that the surface results minimum also if it
is p=o0.,

Therefore a surface with minimum area can
be obtained in absence of loads and in a uni-
form state of stress,

In the figure 4 is visualized the minimum sur
face on a contour of six sides, -




d) Membrane structures undergoing to internmal
ress

The equation "of membrane®, which permits to
£find the balanced geometric configuration of
the structure, appears in the following form:

2 2 i 2 .2 9z, 9z 2
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In the case that the own weight of the
membrane is taken into consideration, the term

at the right of the equal changes and becomes:

(14) 1+

In the figure 5 is represented the surface

of the membrane undergoing to internal pressure
(p/n = 0.2).

1¢30 The numerical solution

The equation (3) and all its transforma-
tions can be written at the finite differences,
In this way, instead of solving a dif.‘fei-entia.l
equation, the approximate solution is supplied
by a system of equations, in gemeral not linear,

The expression (8), written for the gene-—
rical internal way (ij;j) to the finite dif-
Ferences, appears in the following way:
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The boundary conditions are instead expres-
sed, generally, by giving the co-ordinates of
the external points of edge, considered to be
fixed,

Other types of conditions at the contour
can be expressed, bearing in consideration the
hyperbolic or elliptic characteristics of the
differential equation,

For what I;efers to the iterative method,
chosen for the solution of the system of equa-—
tions composed by the (15) written for all the
internal nodes, the Gauss-Seidel method has
been adopted for the expression vhich rules the
operation of the pre-stressed membranes in ab-
sence of loads and for the minimum surfaces, In
the case of membranes undergoing loads, as the
pneumatic structures, the Gauss method supplies
in general a weak convergence, .

And then it is advisable to solve this type
of structures by means of the method reported
in the section 2,

2., MEMBRANES WITH MOBILE CONTOURS

In the case that the membrane is supplied

" with an edge, composed only by anchorage points,

the equations (1), (2) and (3) cannot in general
be used any more for the purpose of obtaining a
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sdlution to the problem of the research of the
geometric configuration, 1In this case it is
convenient to start conéidering a net made of
nodes and of fictitious rods, as well as to re-
quire in the space the balance of the met that
will thus be formed,

. The balance of the generical mode k, to
which flows a numbef m of rods, in the step
0 in which the geometry is supposed to be
known, is scalarly expressed by the

N 1

m ]
(Ef Egé'd x°, = P°
1 ki Lki ki = “xk
M g°
ki °
(16) ] ;h -IEA Yy = Pix
m °
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in wvhichs:
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Xy y;. z; = co-ordinates of the generical in-
ternal point k in the step 0,

s;i = gtresses in the rod ki 1in the
step O ,

Lii = length of the rod ki in the step
o,

P;k’P.k'Pokf components of the load in the step
FETER o according to the directions x,
y and =z respectively,

The connections (16) are written for each
internal node, thus giving us 3n equations,
being n the number of "free" internal nodes.,
In a compact way the system of equations can be

written:

(17) [Ad s} - {ed

in which 8 is the vector of stresses, A is

the matrix of cosines directors of the elements
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(rods) and P is the vector of loads.

The global unknowns of the problem are the
m, values of the stresses ski in the rods
and the 3n co-ordinates of the internal nodes,

The solution, in a practical order, of our
system of equations of balance, can be faced in
various ways, according to the quantities chosen
as unknown ones,

We can thus follow two ways:
a) in the case that the geometry of the struc—

tural surface is not khown,

b) in the case that the geometry of the struc-
tural surface is known,

a) Geometry of the unknown structure

The equations (16) can be solved, when the
stresses ski have been fixed on the rods, re-
questing from a system of 3n not linear equa-
tions the 3n unknown co-ordinates of the no-
des, ‘

This type of solution is advisable for the
research of the initial geometric configuration,
vhen the conditions at the contour are free,
but it meets difficulties in the numerical so-
lution, owing to the not linearity, frequently
remarkable, of the system to be solved,

For the purpose to make easier the conver-
gence of the iterative process (Newton-Raphson),
a first value of the co-ordinates of nodes can
be obtained by giving arbitrary values to the
ratio ski/iki =4q.; « In this vay a linear
system of equations is solved obtaining the va-
lues of the first iteration with the possibility
of obtaining a remarkable acceleration of the
convergence if the given initial values are
suitable,

The iterative method used to solve the
equations of balance continues than in the known
way: obtained the first result with the solutim
of the linearized system:

4] {a}=103

in which with [;ﬂj has been shown the matrix

7 ° °
. formed by the differences A Xpi ¥ A Yiq ¥

° - —
A zy; and vith Ay = Ski/Lki the ratio bet

wveen force and length of the rod ii s We pass




to the iterative step with at disposal the first
set of solutions (x°; y°; z°; 5°; L°®).

The further iterations are obtained with
the method of the successive substitutions,
With this method the vector of loads is in-
creased step by step and the not linear steps
are up-to-dated at each iteration. 1In a gene-
rical (r) iteration we shall have:

= r l r
03" g3 -7} = 4473
The iterative sequency is continued until the
out—-of-balance {A P}r < E .

In the current practice are frequent bonds
of project in the definition of the net Fformed
by the rods, The most frequent restrictive con
-ditions are the ones of imposing stresses or
constant lengths in a whole of rods,

In a specific case of a net of cables it
means to have cables sized at the optimum of re
sistance in the case of prescription of constant
stresses along a line, And of easier pre-fabri-
cation and ease of assembling in the case of
constant lengths.

If, after having obtained the desired geo-
metry and state of stress, it is required to in
troduce restrictive conditions on stresses or
on lengths of rods, changing the minimum possi-
ble the starting geometry itself, an advantage-
ous method is the one to find the compromise so—
lution by means of not linear programmation,

~ Considering to introduce r <m conditions
on the lengths and on the stresses of r rods,
the problem of not linear programmation can be
introduced as follows:

-

variables: E:. Yy Zy S_]
" . 2
objective function: £ = E Bx - %) +
2|,
+ (y - y,)2 + (z - z,)]—-bmin

‘bonds: g(x, y, 2, 8):0; 8> 0

in vhich x, vy, 2z co-ordinates of nodes (un-
’ known)

Xgs ¥Yor Zo CO—ordinates of nodes in
the known initial condition

S stress in the rods

The objective function and the bonds are

not linear with reference to the variables, and
therefore the solution is found by means of a
sequence of minimization with the suitable choi
ce of the function of penalization.

The bonds are represented by the 3n equa-
tions of balance and by the r conditions gi-
ven to the stresses and to the lengths of rods,

b) Geometry of the known structure .

In this case are known the 3n co-ordinates
of nodes. Projectually speaking, this means
that the structural geometry has been defined
for reasons of architectonic order, Usually a_
thus defined surface does not satisfy the con- -
ditions of balance, The solution of the prob—
lem will consist in finding the nearest balan- -

" ced surface to the one of project,

we have as unknown the vector < S 3 of stresses

Known therefore the matrix I:ﬁ? in the (17)
in the rods, 1In this wvay we arrive to a system
of 3n equations with m unknowns with 3n>m,

This system, generally, does not admit an
univocal solution, unless we have 3n-m 1i-
nearly depending eqaat:l.on's and therefore the
degree of the matrix [A] of order m .

Also of this process we limit ourselves,
For the time being, to a hint, We are now look
ing for, as written in (a), a solution of first
attempt, thus obtaining a first set of values
for stresses in the rods contained in the vec-
tor {S} . The vector {3} will not be able
however ::o satisfy the conditions of balance
associated to the matrix EAJ known of cosi-
nes directing, and therefore will exist a lack
of balance «'((A P} in nodes where

TRRIE P ST

The value of the vector of stresses S}
vhich, associated to the matrix [A], wvill mu
merically satisfy the balance, can be obtained
minimizing the difference {A r} vith the me-
thod of least squares, Obtained the value of

{s} vnicn minimizes {A p}-{d p}' the final

geometry of the surface can be obtained by means
of the method reported in (a).
It is possible to reach directly the same |
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result by means of the following Formulation in

terms of mathematic programmation:

variable: [x, y, z, g]
objective function: I (x-x,)2 + (y_y°)2+

3 + (z-z,)ﬂ —bqin

bonds: g(x, ¥, z,8) = 0;S> 0

The objective function represents the basic
request to satisfy the nearest possible the
starting geometry.

The bpnds are represented by the balance
equations,

2,2, Numerical results

The figures 6 and 7 represent the poéition
taken by the net of rods with rest in four po-
sitions, having requested respectively constant
length and constant efforts in the internal

rods,

Fig., 6

The Figure 8 shows the position of balance
of a sail anchored on three points, undergoing

to a constantly direct load. i
A structure with a remarkable number of no%

des and rods, anchored in 7 external points at
different levels and with internal bearing, is
visualized in axonometry (fig. 9).
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3. THE INTERACTIVE PLANNING COMPUTER-ENGINEER

In the research of the surface of membranes
it is of remarkable assistance for the planning
to obtain the plotterized outputs from the com—
puter, thus making immediately visible the re-
sult of the made calculations,

An even greater advantage can be obtained
by means of the use of a video-display which
permits to visualize instantly, by means of a
cinescope, what a programme sends in output,
The advantage of such a device is remarkable if
the structural organization of the programme
can avail itself of a suitable bi-directional
organization (that is if it can receive infor—
mation and supply results),

An electronic programme, "bi~directiona11y
structured”, during the performance of the ope-
ration which elaborate the known values, can
momentarily interrupt the calculation, make mo-
difications to data, and start again, elaborat-
ing the new values,

In order that such a programme can operate,
it has to be capable of being introduced into
an inter—active computer, that is such to allow
to operate from the outside, acting on it when
it is deemed advisable, according to a typical
operation of correction, attempt, or verifica-
tion of project.

The computers supplied with these program-—
mes are not- any more instruments, but they have
the possibility of being inter—active in a de-
signing sense, thus becoming helps to think
and to solve a problem of engineering or of ar—
chitecture,

The videOadispiay thus becomes the instru-
mental and mental extension of the operator,
increasing in an enormous way the capacity, qua-
lity of designing and offering, further to this,
the possibility of easily the optimal solution.

With the diagram with blocks of the Eigurg
10 it has been shown in scheme the inter—active
operation of the programme of calculations,

To illustrate an inter-active sequency, in
the figure 11 has been visualized on the video
a type of structure, modified according to the

exigencies of the project.

INPUT
ENERAL DATA
PARAMETRIC
DATA
SURFACE

DETERMINATIO
STATE “O*

EMORISATION
GEOMETRY OF
STATE “O*

-Anéhorage modif.
- Force ol
- Langh s

Rotation, Translatio:
Prospective view,etc,

Fig. 10

The sequency illustrates the research of
the surface in balance, anchored to dis-connect-
ed points at different heights, .

In the sequencies are Qisualized some inter-
active steps of the calculation, the final choi-
ce of the geometric shape with possible rota-
tions and the plotterizations on paper, obtain-
ed after that the requested requisites had been
satisfied, On plotter also the graphic indica-
tion of the flat strip canvas pattern which,
assembled together, will form the spacial sur—
face which cannot be developed of the structure
(figure 12) has been obtained,

Figure 13 shows the final result of finding
the pneumatic structure anchored in a square of
36x 36 mt,
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Fig. 11 - Interactive sequence of project with the video display consol IBM 2250,

(1) Coordinates of anchorage points; (2), (

; H v (3) visualization of the iterative calculation; (4) con-
vergence achived; (5), (6) rotation; (7) Plant view; (8), (9) changement of an anchorage.piilt:
(10) finding the new equilibrated surface; (11) rotation; (12), (13) changement in the peak points;

(14) newv equilibrat : :
plu; rotatgon. rated shape; (15) rotation; (16) the four intermal peak points become a single point

134



REFERENCES

WILEELM FLUGGE, Statik und dynamik der Schalen,
Springer—Verlag, 1962,

A. PUCHER, Ulber den Spannungszustand in gekrim-
mten Flichen, Baton U, Eisen, Bd. 33, 1934.

L. GRUENDIG, H.L, SCHEK, Analytical form find-
ing and analysis of prestressed cable net-
wvorks, Int, Conference of Tension Roof
Structures, London, 1974,

E, SHAVIV, Continuous modular surface Structu-
re: A Computer Graphics Approach,

R. TROSTEL, F, OTTO, Zugbeanspruchte Xonstruk-
.tionen 1,

% 135

e e e I




=

136

i
i
i
i
i




