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SUMMARY

The force density method was developed for cable networks. In this paper, we
apply this force density method(® to find the initial equilibrium configuration of
membrane structures approximately by using the relationship between
membrane stress in triangular element and equivalent imaginary forces. Some
examples of this analysis are illustrated, '

1. INTRODUCTION

Cable reinforced membrane structures possess significant advantages over other

conventional structures for enclosing large volume, They have many features

and need special analysis different from those for conventional structures. The

features are as follows.

(1) They are essentially the unstable structures, and the initial stress or the
luuer pressure must be applled to make them pe staple.

(2) They donot have flexural stiffness.

(3) They are able to resist only tensile stress.

Considering above features, two phases of the analysis are necessary, i.e. one is

the form finding analysis and the other is the structural analysis including large

deformation and wrinkling effect.

Among solution methods for the form finding analysis for membrane structures,
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the Newton-Raphson method is widely used.

drawbacks as follows.

(1) Not only coordinates of boundary nodes but also assumed initial coordinates
of free nodal points are necessary. Iltmeansthatittakesmuch time to make
input data.

(2) According to tho ncoumed injtial coordinate, converged sululivus can nol be
always obtained, i.e. the calculation sometimes diverges.

So more practical and convenient method is necessary to solve the form finding

problem.  On the contrary the force density method, which was developed for

cable networks, has advantages as follows.

(1) Because it is a linear analysis, the equilibrium configuration can be always
obtained.

(2) Only boundary conditions and element data are necessary to solve the
preblem.  Assumed cnardinates of free nodal points are not NOCOLLary, 6o
input data can be made more speedy. _

Firstly, we describe how to apply the force density method when the cable stress or

length is specified by designer. Then we apply this method to solve the form

finding analysis for membrane structures.

At the heginning nf the design phase of membrano gtructuraee, oquilibrium

configurations under various boundary configurations and stress distributions

should be solved to check their feasibility. So this method can be a more
practical and powerful strategy for desi gning membrane structures.

But this method has some

2. FORCE DENSITY METHOD
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Figure 2.1 Cable elements converging at node i

In any point of a network consisting of pin-pointed bars (see Figure 2.1), the
following equations of equilibrium of forces are derived®,

{(x. —x)
>—"gs =p.
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where  xj, i, 2;: the coordinate of node i,

Sij : the axial forces of the cable element ij,

Lij : the length of the cable element i,

)y : summation of cable elements converging at node i,
P : external force acting node i.

By making equation (2.1) for every nodal point of the structure, a system of
equations can be obtained. :
Now we introduce new parameter in equation (2.1),

9; =S, /L, e (2.2)

which is called the force density. Then equation (2.1) can be written as follows.
Z (x, ~ x}.)qU :.Pxi
J

z(yi -y)e; =P, srsvnsssnses (2,8)

yi
J
Z (z‘. - zj)ql.j = Pu.
i

If the designer specifies the force density g, equation (2.8) become linear equations

with respect to coordinate z, ¥, 2, and we ran nhtain fallowing equation from
equations (2.3).

Zqij' x; +Pxi
o
i Zqij
J

- where g : the force density of the cable element i
Z : summartlon of cable elements converging at node i

x

Equations about y and z coordinate have same form.

Iterating equation (2.4) for all free nodal component until change between the
actual value and the former one becomes small enough, we can get the
equilibrium configuration, Convergence condition can be written as follows.

n—1
i

|2 = & = 0.0 mesmemmeners (O, 5)
where n represent the number of iteration step. After calculating length of cable
element using coordinates of this equilibrium configuration, axial force can be

obtained as follows.

S=¢q¢-L e (26)
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It is more naturally for the designer to specify axial force (S ) or length (L) of
cable rather than force density (¢ ). Itis possible if the force density method is
nsed iteratively until errore botwoen specificd value and caleulated value becuiue
small enough as see in Figure (2.2),
where  Sp: specified axial force,

Lp : specified cable length,

e : tolerance faclor,
and without suffix means actual value.
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e : tolerance factor

Figure 2.2

3 APPIICATION TQ MEMBRANE STRUCTURES

In this chapter we will discuss how to apply the force density method to the form
finding analysis for membrane structures. At first the triangular membrane
element is decomposed to three cable elements. Then the initial configuration is
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calculated assuming that each force density ’ g’ of all cable elements is equal to
1.0. '

If it is assumed that the state of stress in triangular element is constant, we can
get a linear relation between membrane stresses and equivalent imaginary forces
as follows,

o, E,
{_ g, ]: { T ] {Fz} | ceemneenn (3.1)
<y Fy

where oy, Oy, Txy : membrane stress,
F,,F),F, : equivalentimaginary forces.

As a relation between the global coordinate system and local one is presented as
Figure 3.1, the explicit representation of transformation matrix [ T ] and its
inverse can be written as follows,
al2h (a3+b2=)180a%  (a®—b%+ ) 8Ac%
2
[T ] =5 [ 0 287a% 24/ a% } ------------ (3.2)

2 2
0 ~(a*+b%-)12a%  (o®-bP+cP) f2a%

2A/a -—(az-{«bz—cz)(az——bz-i-cg)/SAa (bz—cz)/a

] ‘
M- =%[ 0 bla®~b*+tyran b ] ------------ (3.3)

0 c(a®+b2-F)r4a c
where ¢ : thickness of the membrane,
A : area of the triangular element,

a, b, c : length of the side ij and so on.

XY, Zi) &,y Fy (xi,yi)

J
(X;,Yj, Z)
_> Fy
.Z y (Xk > y}i)
Y . :
l X ' (Xk, Y1, Z) 1 X
Globall Coordinate ‘ Local Coordinate

Figure. 3.1 Coordinate system
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Secondly equivalent imaginary forces of cable elements are calculated using
equation (3.3). Then the force density method is applied iteratively as described
in the former chapter assuming that each cable axial force is constant. Finally
the membrane stresses are calculated using equation (3.2), with cable axial forces
and new coordinates. This stepisrepeated until the difference between specified
membrane stresses and calculated ones becomes sufficiently small.

Thege proecases are summwarized in Figure 3.2,

4 NUMERICAL EXAMPLES
4.1. Spherical Pneumatic Structure

To demonstrate the arcuracy of proposed method, the form finding problem of a
spherical shaped pneumatic structure is solved.  Conditions of the analysis are

as follows.
Inner pressure : 0.25¢/m2
Membranestress ; 1.0t/m

Only fixed boundary coordinates are specified and sther fiee nodal couidinale are
assumed to be zero at first. Calculated shapeisshown in Figure 4.1 and 4.2.
From the relation between the inner pressure and the membrane stress, the
radius (R) of the sphere becomes 8.0 m. Table 4.1 shows comparison between
calculated and theoretical values. These calculated values are derived under a
condi‘tion in which the tolerance factor (e, in Figure 3.2) is 1.0E-3. It is found .
that the agreementis good enough. ‘

Figure 4.3 shows the change of the maximum movement ( equation 2.5 ) and
maximum unbalanced force. Figure 4.4 shows the change of maximum errors
between specified imaginary axial force and calculated one ( see Figure 2.2 ).
Figure 4.5 shows the change of maximum error of specified membrane stress and
calculated one.

4.2. H.P. Type Tensile Structure Bordered By Cables

H.P.type tensile structure is solved. Four edges are bordered by cables.
Membrane stress is assumed to be 1.0 t/m and cable axial force is assumed to be
15.0t. Coordinates of four corner points are specified. At first coordinates of
other points are assumed to be all zero. Figure 4.8 to Figure 4.8 shows calculated
shape.

5. CONCLUSIONS

We have discussed how to apply the force density method to the form finding

analysis for membrane structures. Numerical examples of a pneumatic
structure and a tensile struciure are presented. Convergence is good enough and

errors between specified stress and calculated value can be controlled easily. It
is found that this method will be a powerful strategy for designing membrane
structures.
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Figure 4.2 Elevation movement and unbalanced force
Node X Y . & R Error(%)
1 0.0 5.2444 0.7410 7.9935 B8 1Y
2 0.0 4.3419 1.4140 7.9885 0.1440
3 0.0 3.3954 1.9388 7.9878 0.1519
4 0.0 2.3223 2.3496 7.9861 0.1731
5 0.0 1.1871 2.8049 7.9851 0.1860
6’ 0.0 0.0 2.6931 7.9846 0.1923
7 1.1050 5.1709 . 0.7124 7.9930 0.0878
8 11127 4.3392 1.3959 79911 01114
9 1.1465 3.3902 1.8515 7.9894 0.1331
10 1.1725 223901 2.2604 7.9873 0.1582
11 1.1845 1.1855 | 2.5165 7.9858 0.1770
12 2.2666 4.9953 0.5247 7.9949 0.0640
13 2.2574 4,3329 1.0387 7.9963 0.0462
14 2.2879 3.3688 1.56848 7.9917 0.1040
15 23223 23212 1.9929 7.9902 0.1224
16 3.3331 4.2500 0.6020 7.9941 0.0743
17 3.3665 3.3648 1.1335 7.9960 0.0499

Table 4.1 Comparison between calculated and theoretical value
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Figure 4.4 Change of errors (e1)
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Figure 4.5 Change of errors (eg)

Figure 4.8 Elevation—2
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