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ABSTRACT: 
Suspension bridges are the current technical solution to overcome long distances. In this paper, the traditional 
suspension scheme is compared with a different technical solution providing additional structural resources 
thanks to a system of cables with opposed curvature. Favorable effects of this scheme are evidenced, concern-
ing wind resistance, regarding to serviceability conditions. Dynamic analyses in time domain are performed, 
within a FE framework capable to take into account structural nonlinearities and dynamic wind loads. 

1 INTRODUCTION 

Long-span bridges represent a great challenge in 
structural engineering. As a matter of fact, the cur-
rent solution for very long-span bridges is the sus-
pension scheme, as demonstrated by the recent 
achievements of Humber Bridge (UK, 1981, center 
span of 1410 m), Great Belt East Bridge (Denmark, 
1998, 1624 m), Akashi-Kaikyo Bridge (Japan, 1998, 
1991 m), and by the proposals for Messina Strait 
Crossing (Italy, 3300 m) and for Gibraltar Link (Gi-
braltar, 5000 m). Technical strategies are investi-
gated in order to guarantee adequate resistance, 
structural resources against natural events, design 
economy. 

In particular, suspension bridges evidence a 
strong sensitivity to the wind action. This problem 
has been mainly faced, since now, by acting on the 
bridge deck design, whether by increasing the tor-
sional stiffness through a very rigid truss-girder (as 
preferred in Japan and U.S.), or by improving the 
aerodynamic performances through closed box or 
multi-box girders (mostly adopted in Europe). 

These choices have been usually supported by in-
tensive wind tunnel campaigns performed on cross-
sectional models, in order to characterize the aero-
dynamic behavior of the selected deck. 

Nevertheless, it is worth to point out that, for in-
trinsic scaling problems, it is not possible to repro-
duce in the wind channel the real flow. Moreover, 
the extension of cross-sectional results to the entire 
structure is not straightforward and free of uncertain-
ties. Therefore, an extreme optimization based on 
such cross-sectional tests does not cover all the risks 
concerning the global behavior and it has no chance 
to capture significant three-dimensional phenomena, 

including turbulence effects, along-span vibrations, 
full-scale interaction between turbulence and self-
excited loads (see Larsen et al., 2000). 

It seems then troublesome to predict the behavior 
of the whole bridge in a safe and accurate manner. 

On the other hand, a high level of reliability must 
be guaranteed for such a strategic structure. A strong 
optimization of the deck in the aerodynamic sense 
need to be supported by additional structural re-
sources provided not only by the deck, but also by 
the global structural design. 

In fact, an aerodynamic closed-box girder is un-
able to provide adequate torsional stiffness over a 
very long-span, while a truss girder would be ineffi-
cient for its weight and poor aerodynamics. 

Therefore, a cooperating structural system com-
posed by a deck supported by a multi-cable system 
could offer a convenient answer, as underlined by 
Astiz (1998).  

This idea has been first suggested by S. Musmeci: 
an interesting structural model of suspension bridge 
integrated by means of stabilizing cables with op-
posed curvature has been proposed for the Messina 
bridge (Fig. 1). These secondary cables should pro-
vide additional stiffness and resistance not only 
against lift and torsional wind actions but also 
against drag, as they lie on a non-vertical plane. 
Such a structural redundancy results in additional 
safety, which could compensate some not-yet-
experienced effects on super long spans. First static 
analyses on this topic have been carried out by Borri 
et al. (1993), evidencing smaller along-wind dis-
placements.  

In this paper, a detailed study on the efficiency of 
an analogous scheme is presented, under dynamic 



loading, focusing the attention on the response to the 
wind action. 

Two ideal schemes are considered and analysed 
by means of a suitable numerical code, capable of 
parametric generation of the structural model (Sal-
vatori and Spinelli, 2005). Structural nonlinearities 
are included, as well as self-excited and buffeting 
loads. 

First, drag effects are neglected and a simplified 
planar system is studied. A complete three-
dimensional model will be considered as a further 
step. 

Self-excited forces are described in time-domain 
by means of indicial functions, which have demon-
strated their feasibility in the representation of com-
plex aeroelastic phenomena (Costa, 2004). 

Buffeting forces are traditionally modelled, ac-
cording to Simiu and Scanlan (1996). 

Tests are performed both in laminar and turbulent 
flow.  

In order to show the advantages introduced by the 
proposed double-effect cable solution, its dynamical 
properties and its behaviour under wind excitation 
are compared with those of the classical scheme. 

In particular, it is shown that the double-curvature 
solution presents some advantages in terms of ser-
viceability conditions, while critical flutter velocity 
is strongly dependent on additional cable and deck 
mass and stiffness. 
 

 
Figure 1. Musmeci’s proposal for the Messina Strait Crossing. 
 
2 MECHANICAL MODEL 

A long suspension bridge consists, basically, of 
bridge towers, bridge deck, cables, suspenders, and 
anchorages.  

A mechanical model having N degrees of free-
dom (DoFs) is examined. Equations of motion, for 
the linear case, can be written as follows 
 

( ) ( ) ( ) ( )tttt FKqqCqΜ =++ &&&          (1) 
 
where the vector q of order N represents the dis-
placement vector, F is the vector of external forces 
and M, C and K are, respectively, inertia, damping 
and stiffness matrices. 

2.1 Suspension bridge (‘Classical’ solution) 
The classical scheme of suspension bridge provides 
two main cables connected to suspenders, hanging 
the bridge deck (Fig. 2 and Fig. 3). 
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Figure 2. Reference structural model for classical suspension 
bridge. 
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Figure 3. Reference cross-section for classical suspension 
bridge. 

 
Geometry of the deck section is identified by the 

main characteristic dimensions, namely the chord B, 
and the thickness D. Pre-stress of the main cables 
(with area Amc) is indicated with T1. The area of 
hangers is referred to also as Ah. 

2.2 Suspension double-curvature bridge 
(‘Musmeci’ solution) 

A couple of cables with opposed curvature is added 
to the classical suspension scheme. Secondary cables 
are disposed in a vertical plane (Fig. 4 and Fig. 5). 
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Figure 4. Reference structural model for ‘Musmeci’ solution. 
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Figure 5. Reference cross-section for ‘Musmeci’ solution. 

 
A characteristic parameter of the structure is the 

pre-stress of the secondary cables, namely T2. The 
area of secondary cables is Asc. 

 



3 WIND MODEL 

Bridges are immersed in a turbulent wind field, as-
sumed incompressible and non-viscous. Wind veloc-
ity Uwind is additively decomposed as a time-space 
variable field 
 

( ) ( ) ( )t,M'Mt,Mwind UUU +=         (2) 
 
where t is the time, U is the mean wind speed and U′ 
represents a turbulent perturbation, acting at point M 
of coordinates X(M), Y(M) and Z(M). 

Mean wind is directed along the X axis, while the 
turbulence field has only one significant component, 
identified by w and directed along the vertical axis 
Z. The resultant wind field is then given by 
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Assuming neutral conditions, the mean wind ve-

locity U may be expressed by the logarithmic pro-
file, while turbulence components are defined 
through an assigned power-spectral density and 
along-span coherence functions. 
 
4 LOAD MODEL 

Wind load, acting on each bridge deck section, is 
expressed as superposition of three components, 
namely a quasi-static (0), a buffeting (b) and a self-
excited (se) action, directed along the global refer-
ence axes 
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4.1 Quasi-static forces 

Static forces are due to dead loads and quasi-static 
wind action. 

Quasi-static wind action is dependent only from 
the angle of attack α, that is from the relative place-
ment of the bridge deck section with respect to the 
mean wind direction, through the aerodynamic coef-
ficients CD(α), CL(α) and CM(α). Such coefficients 
are usually measured in wind tunnel tests and are 
given with reference to the local sectional reference 
frame. In particular, subscripts D, L and M are re-
ferred, respectively, to drag force, lift force and 
aerodynamic moment, acting along the sectional 
chord, in the orthogonal direction and about the sec-
tional center of mass. 

Therefore, drag, lift and moment can be ex-
pressed as 
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where q = 1/2ρU2

  is the kinetic pressure and ρ is the 
air density. 

Static forces identify the deflected position in 
which modal and linear time-domain dynamic 
analyses are performed. 

4.2 Buffeting forces 
Both quasi-steady and strip assumptions are ac-
counted for in buffeting modeling. In particular, ad-
mittance functions take the values of unity and the 
action of turbulence on each section is assumed as 
independent from the action on the contiguous sec-
tions. 

Buffeting forces are modeled, following the tradi-
tional quasi-steady formulation (Simiu and Scanlan 
1996) and with reference to the wind field assigned 
in eqs. 3, as 
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4.3 Self-excited forces 
Self-excited forces are commonly modeled by 
means of frequency-dependent parameters (flutter 
derivatives) experimentally extracted and introduced 
in a time-domain framework. The original formula-
tion is due to Scanlan and Tomko (1971), for a two-
dimensional bridge deck section. 

The complete thee-dimensional formulation, in-
cluding terms related to drag force and horizontal 
motion, is proposed by Scanlan and Jones (1990) 
and recalled in eqs. (7), where Pi

*, Hi
* and Ai

* are the 
flutter derivatives (i = 1, …, 6). 

Although such flutter derivatives offer the great 
advantage of being extracted through a consolidate 
experimental approach, they are is not well suited 
for time domain simulations, being expressed as 
function of reduced velocity Ured = U/fB or reduced 
frequency K = 2π/Ured where f is the response fre-
quency. 
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An attractive alternative is offered by the pure 

time-domain formulation via indicial functions pro-
posed by Scanlan et al. (1974) and further discussed 
by Borri & Höffer (2000) and Borri et al. (2002). 
The specific formulation of Costa (2004), arranged 
here for a three-dimensional structure,  is adopted: 
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Self-excited forces are calculated via convolution 

integrals. Displacement histories are expressed as a 
series of infinitesimal step-wise increments. Non-
stationary evolution in time of self-excited loads due 
to unit displacements is described by indicial func-
tions. Three indicial functions are required for each 

force component. Each function is identified from 
the corresponding flutter derivatives. 

This complete formulation, with respect to the 
other cited, include self-excited drag and horizontal 
motion. Analogous three–dimensional analyses can 
be performed by a modal approach (e.g. Chen and 
Kareem 2001, Scanlan and Jones, 1999), valuables 
only for linearized problems. 

 
5 NUMERICAL MODELLING 

The comprehensive program for the analysis of 
bridges under wind excitation developed by Sal-
vatori and Spinelli (2005) has been adopted for the 
analyses. In fact, commercial programs can not con-
sider history-dependent loads. The tool includes 
model generation, multi-correlated wind field gen-
eration, finite-element solver, as well as post-
processing analyses, and allows an easier automati-
zation of the simulations.  

The pre-processing routine generates the FE 
model, given a few geometrical and mechanical 
characteristics (see Figs. 2-4). The number of mod-
eled cross-section is an input for the pre-processor 
(here 10 sections have been used). The pre-processor 
also generates wind velocity time-histories of the 
through autoregressive (AR) algorithms.  

As first step, a nonlinear static analysis under 
dead weight is performed. The modal analysis is 
then carried out in the statically deformed configura-
tion, and the Rayleigh (linear) damping calculated. 
Finally, for each chosen value of the mean wind ve-
locity, partially correlated wind time-histories are 
generated and time integrations (linear in this first 
study) are carried out. 

 
6 STRUCTURAL ANALYSES 

In this paper, the main goal is to emphasize the ca-
pabilities against wind action of the suspension dou-
ble-curvature bridge, with respect to the classical 
suspension scheme. 

Therefore, a first comparison is performed, be-
tween the two structural models, under different load 
conditions: 

1. self-excited forces; 
2. self-excited and buffeting forces. 

In order to model properly self-excited forces, the 
identification of indicial functions is performed from 
aeroelastic derivatives, via a nonlinear least-square 
procedure. 

 First analyses are carried out for a mechanical 
model with a closed rectangular section character-
ized by dimensional ratio B/D = 12.5. 

6.1 Case study 
The case study pertains to the comparison between 
different technical schemes, characterized by equal 



mechanical properties (Tab. 1): a ‘Classical’ suspen-
sion and two ‘Musmeci’ double-curvature bridges, 
characterized by different pre-stresses of the secon-
dary cables, and indicated as Musmeci(1), and Mus-
meci(2). 
 
Table 1. Mechanical properties common to the bridges 
(L=main span length;  H=height of the towers; F=sag of the 
suspension cables; nh=hanger number; Jx=equivalent flexural 
moment of inertia; Jx=equivalent torsional moment of inertia). 

L [m] B [m] H [m] m[kg/m] Amc[m2] Jx [m4] 
3300 52 378 5.5⋅104 2.4153 8.418 

      
D [m] Fmc [m]  nh [-] I [kgm] Ah [m2] Jy [m4] 
4.16 310 110 2.8⋅107 0.0446 53.457 

 
Additional properties required for the double-

curvature suspension bridges ‘Musmeci’ are the sec-
tion of the secondary cables (Asc=0.8189 m2), the sag 
(Fsc=57 m) (see Fig. 4 and Fig. 5) and the pre-stress 
T2: Musmeci(1) has a pre-stress of 37 kN/m, Mus-
meci(2) of 156 kN/m. 

In the case with the lower pre-stress of 37 kN/m, 
analyses of double-curvature bridges are performed 
considering different materials for the stabilizing ca-
bles. In particular, Kevlar (Musmeci(1k)) and carbon 
fiber T300 (Musmeci(1c)) are taken into account. 
Main properties of such materials are collected in 
Tab .2. 

 
Table 2. Main properties of materials used in double-curvature 
bridge (ρ=density;  E=Young modulus). 

Material ρ[kΝ/m3] E [GPa] 
Steel 78.00 170 

Kevlar 14.50 131 
Carbon Fiber T300 17.69 231 

6.1.1 Analyses with self-excited forces 
 

For the first study of a planar system, coefficients 
of indicial functions are taken from Costa (2004). 
The first comparison between the two structural 
schemes concerns coupling frequencies and critical 
flutter condition. In particular, first six modes are 
shown in Tab. 3.a and Tab. 3.b. Vibration modes re-
lated to the carbon fiber model Musmeci(1c) are 
omitted, being practically identical to the modes of 
Musmeci(1k), indicating that the lightening of the 
masses produces the main benefits with respect to 
the change in the elastic modulus. 

The accuracy of higher mode shapes depends on 
detailed modelling of the deck structure, which is 
not included in this study. The damping ratios are 
taken as 0.6%. 

Critical flutter shape evidences, for all structures, 
the coupling of the two first vertical and torsional 
symmetric modes, as shown in details in Tab. 3.a 
and Tab. 3.b. 

A lower critical flutter threshold, with respect to 
the classical model, can be observed in Tab. 4, be-
cause the frequencies of the vertical and torsional 
modes coupling at flutter become closer in the Mus-
meci’s structures. An increase of critical flutter 
speed is registered as the mass of the counter-
opposed cables decreases, as in the Musmeci(1k) 
structure. 
 
Table 3.a. Modal analyses of different structural solutions 
(V=vertical; T=torsional; S=symmetric; A=antisymmetric; 
No.=number of sines of the critical shape; *=modes coupling at 
flutter condition). 

 Classical Musmeci(1) 
 Period 

[s] 
Modal 
shape 

Period 
[s] 

Modal 
shape 

1 14.53 VA 13.20 VA 
2 11.93 VS* 11.52 VS* 
3 8.97 VS3 9.26 TS* 
4 8.84 TS* 8.67 VS3 
5 8.19 TA 8.23 TA 
6 7.92 VA4 7.13 VA4 

 
Table 3.b. Modal analyses of different structural solutions  

 
 Musmeci(1k) Musmeci(2) 
 Period 

[s] 
Modal 
shape 

Period 
[s] 

Modal 
shape 

1 13.18 VA 10.75 VA 
2 11.20 VS* 10.53 VS* 

3 8.81 TS* 8.93 TS* 

4 8.50 VS3 7.47 TA 
5 7.97 TA 7.27 VS3 
6 7.11 VA4 5.69 VA4 

 
Table 4. Flutter condition for different structural solutions. 

 Ucr [m/s] Tcr [s] Flutter Shape 
Classical 47 9.66 S 

Musmeci(1) 38 9.87 S 
Musmeci(1k) 40 9.45 S 
Musmeci(2) 36 9.42 S 

6.1.2 Analyses with self-excited and buffeting 
forces 

 
Buffeting forces are simulated by adopting vertical 
wind autospectrum and cross-spectrum according to 
Simiu and Scanlan (1996) and considering the aver-
age elevation above the sea level of the bridge deck 
as 60m. 

Main results concerns the maximum of the root 
mean square obtained for vertical (Fig. 6) and tor-
sional displacement (Fig. 7). Even if a decreasing of 
the critical flutter velocity is observed, as the pre-
stress of the secondary cables increases, a good be-
haviour is observed in serviceability conditions. In 
fact, displacements of the Musmeci’s solutions re-
main smaller than those of the ‘Classical’ solution. 

This is due also to the fact that energy content of 
turbulence is lower at high frequencies, and, there-
fore, vibration modes characterized by smaller pe-



riod, as the ‘Musmeci’s (Tab. 3.a and Tab. 3.b), re-
sult less excited by turbulent flow.   
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Figure 6. Maximum root-mean-square values of  vertical dis-
placement, for different structural schemes and various  mean 
incoming velocities. 
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Moreover, the Musmeci(1k) solution presents a 

very good behaviour in serviceability conditions, 
guaranteeing the smallest displacements with the 
lowest pre-stress.  

A significant trend can also be identified in Fig. 6 
and Fig. 7, that is a more stiffened structure reaches 
the flutter threshold more ‘rapidly’, with respect to 
the ‘Classical’ solution. 
 
7 CONCLUSIONS  

A comparison of the behaviour against the wind ac-
tion of two structural schemes is presented. A ‘Clas-
sical’ suspension scheme and two ‘Musmeci’-type 
solutions are accounted for, with stabilizing cables 
of different materials. Computer simulation tech-
niques are used to generate wind forces on the 

bridge, including both buffeting and self-excited 
forces. Attention is focused on dynamic analyses, to 
evidence advantages and disadvantages of both 
schemes. In particular, it is shown that the ‘Mus-
meci’ solutions present advantages in terms of ser-
viceability conditions, under the action of turbulent 
flow. A strong dependence of critical flutter velocity 
on additional cable and deck mass and stiffness is, 
on the other hand, observed. Different combinations 
of geometries, mass and pre-stress can give rise to a 
wide scenario in terms of critical flutter velocity, be-
ing very important the modal shapes and frequency 
obtained. The double-curvature solution appears to 
be very interesting and further analyses are in pro-
gress. In particular, a even better efficiency is ex-
pected for non-planar cable systems and less ‘engi-
neered’ deck aerodynamics.   
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